Valuated matroids: a new look at the greedy algorithm
نویسندگان
چکیده
منابع مشابه
On Exchange Axioms for Valuated Matroids and Valuated Delta-Matroids
Two further equivalent axioms are given for valuations of a matroid. Let M = (V,B) be a matroid on a finite set V with the family of bases B. For ω : B → R the following three conditions are equivalent: (V1) ∀B,B′ ∈ B, ∀u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V2) ∀B,B′ ∈ B with B 6= B′, ∃u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V3) ∀B,B′ ∈ B, ∀...
متن کاملA new look at infinite matroids
It has recently been shown that, contrary to common belief, infinite matroids can be axiomatized in a way very similar to finite matroids. This should make it possible now to extend much of the theory of finite matroids to infinite ones: an aim that had previously been thought to be unattainable, because the popular additional ‘finitary’ axiom believed to be necessary clearly spoils duality. We...
متن کاملTwo Algorithms for Valuated ∆-matroids
Two algorithms are proposed for computing the maximum degree of a principal minor of specified order of a skew-symmetric rational function matrix. The algorithms are developed in the framework of valuated ∆matroid of Dress and Wenzel, and are valid also for valuated ∆-matroids in general.
متن کاملThe Greedy Algorithm and Coxeter Matroids
The notion of matroid has been generalized to Coxeter matroid by Gelfand and Serganova. To each pair (W, P) consisting of a finite irreducible Coxeter group W and parabolic subgroup P is associated a collection of objects called Coxeter matroids. The (ordinary) matroids are a special case, the case W = An (isomorphic to the symmetric group Symn+1) and P a maximal parabolic subgroup. The main re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1990
ISSN: 0893-9659
DOI: 10.1016/0893-9659(90)90009-z